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Hepatocellular carcinoma (HCC) has a high prevalence and mortality (1). One of the prin-
cipal challenges in overcoming the poor prognosis of patients with HCC is the high re-
currence rate after curative resection (2, 3). Although patients with early stage HCC are 

candidates for potentially curative resection with a 50%–70% 5-year survival rate (2), resection 
is also associated with a high rate of recurrence and accounts for 70% of tumor recurrence 
cases at 5 years post resection (2, 3). Tumor recurrence is divided into true recurrence (intrahe-
patic metastases) and de novo tumors within the oncogenic liver (2–5). Additionally, although 
robust clinical definitions of these entities have not been established, a cutoff of 2 years has 
been adopted for gross classification of early and late recurrences (2, 3, 6). Tumor recurrence 
is the main reason for the reduced survival of HCC patients. Specifically, early tumor recur-
rence related to intrahepatic metastases results in a 24% decrease in the 5-year survival and a 
54-month decrease in the median survival of HCC patients (2, 3, 5). Therefore, precise preop-
erative screening is necessary to facilitate effective and personalized preventive strategies for 
these patients. Some studies have identified several risk factors that account for early recur-
rence, including high serum alpha-fetoprotein (AFP) level, large tumor size, the presence of 
venous invasion, tumor rupture, and antiviral therapy, but controversy still exists as to which 

PURPOSE 
The aim of this study was to develop and validate a radiomics nomogram based on radiomics 
features and clinical data for the noninvasive preoperative prediction of early recurrence (≤2 
years) in patients with hepatocellular carcinoma (HCC).

METHODS
We enrolled 262 HCC patients who underwent preoperative contrast-enhanced computed to-
mography (CT) and curative resection (training cohort, n=214; validation cohort, n=48). We ap-
plied propensity score matching (PSM) to eliminate redundancy between clinical characteristics 
and image features, and the least absolute shrinkage and selection operator (LASSO) was used 
to prevent overfitting. Next, a radiomics signature, clinical nomogram, and combined clinical-ra-
diomics nomogram were built to predict early recurrence, and we compared the performance 
and generalization of these models. 

RESULTS
The radiomics signature stratified patients into low-risk and high-risk, which showed significant 
difference in recurrence-free survival and overall survival (P ≤ 0.01). Multivariable analysis iden-
tified dichotomized radiomics signature, alpha-fetoprotein, and tumor number and size as key 
early recurrence indicators, which were incorporated into clinical and radiomics nomograms. 
The radiomics nomogram showed the highest area under the receiver operating characteristic 
curve (AUC), with significantly superior predictive performance over the clinical nomogram in 
the training cohort (0.800 vs. 0.716, respectively; P = 0.001) and the validation cohort (0.785 vs. 
0.654, respectively; P = 0.039). 

CONCLUSION
The radiomics nomogram is a noninvasive preoperative biomarker for predicting early recur-
rence in patients with HCC. This model may be of clinical utility for guiding surveillance fol-
low-ups and identifying optimal interventional strategies.
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of these risk factors are more important for 
recurrence (7–9). Aided by advances in bi-
ological and genomic technologies, many 
studies have developed predictive and prog-
nostic molecular signatures for HCC (10), but 
these signatures often rely on post-operative 
and invasive features, such as microvascular 
invasion and genomic analysis. In addition, 
as tumors are spatially and temporally het-
erogeneous, general gene-expression pro-
files determined from small portions of tu-
mor tissue do not allow for a real-time and 
complete characterization of the pathophys-
iology of the tumor (4, 11).

Radiomics is an emerging methodol-
ogy combining key features into an im-
age-based biomarker for monitoring, diag-
nosis, prognosis, and prediction in medical 
research, and is considered to bridge the 
gap between medical imaging and person-
alized medicine (12, 13). Radiomics can cap-
ture the three-dimensional information of 
the total tumor and has proved effective in 
characterizing the heterogeneity of the tu-
mor by acting as a whole tumor virtual biop-
sy (12, 14). A few radiomics analyses based 
on contrast-enhanced computed tomogra-
phy (CT) and magnetic resonance imaging 
(MRI) have been conducted to predict the 
recurrence of HCC (15–26). However, these 
studies had some inherent limitations: for 
example, these studies did not include val-
idation cohorts, the quantifying imaging 
features were extracted from the largest 
cross-section of the tumor, and subjective-
ly determined features were used to build 
the models. In addition, few studies have 
compared the predictive performance of 
radiomics and clinical models and evaluat-
ed the potential improvement in predictive 
capacity of radiomics over clinical models. 
Furthermore, imaging features have been 

proven to capture tumor heterogeneity and 
can also be used to reconstruct the genom-
ic characteristics of highly heterogeneous 
cancers (14, 27, 28). While more radiomics 
models are being developed, the interpret-
ability and credibility of the models are very 
poor due to the difficulty in understanding 
the radiomics features.

Therefore, the purpose of this study was 
to develop and validate radiomics models 
based on contrast-enhanced CT for the 
preoperative prediction of early recurrence 
and prognosis of patients with HCC. Fur-
ther, we explored the complementary rela-
tionship between the radiomics model with 
a readily accessible clinical model. 

Methods 
Patients 

This retrospective study included con-
secutive patients with HCC who underwent 
resection with curative intent at the  Nan-
fang Hospital, Southern Medical Universi-
ty (NFHSMU) (years of curative resection 
2014–2017) or the  First Affiliated Hospi-
tal of University of South China (FAHUSC) 
(2014–2017) or who were included in the 
database of the cancer imaging archive 
(TCIA) and the cancer genome atlas (TCGA). 
The flowchart detailing the inclusion and 
exclusion criteria is presented in Supple-
mentary S1 and Fig. S1.

This study was approved by our institu-
tional review board (NFEC-201208-K3) and 
complied with the Declaration of Helsinki. 
Informed consent was waived for this ret-
rospective research. The overall workflow is 
presented in Fig. 1.

Follow-up
Patients were required to attend a fol-

low-up appointment 1 month after the 
surgery. A second follow-up appointment 
was required at 3–4 months, and every 4–6 
months thereafter (2). Any new lesions con-
firmed by contrast-enhanced CT, contrast-en-
hanced MRI, or histopathology were accept-
ed as recurrence. Recurrence-free survival 
(RFS) was defined as the time from the date 
of resection to the date of recurrence, metas-
tasis, last follow-up, or death from any cause. 
Overall survival (OS) was defined as the time 
from the date of resection to death from any 
cause or to the last follow-up. Patients were 
censored in cases of no recurrence by 2 years 
or on 1 July 2019 (whichever came first). The 
follow-up plan for TCGA and TCIA was as re-
ported previously (29).

CT image acquisition, segmentation, 
pre-processing and extraction of radiom-
ics features

Supplementary S2 describes CT image 
acquisition, the image operation process, 
and the image segmentation. Radiomics 
features were extracted from each vol-
ume-of-interest (VOI) using the pyradiom-
ics package (http://www.radiomics.io/pyra-
diomics.html; version 2.2.0; Computational 
Imaging and Bioinformatics Lab, Harvard 
Medical School). The pyradiomics package 
was run in Python (https://www.python.
org/; version 3.7; open source software; 
Python Software Foundation). Supplement 
S2 also describes intraobserver (reader 1 
twice) and interobserver (reader 1 vs. read-
er 2) reproducibility evaluation. In patients 
with multiple (two or more) lesions, the 
largest lesion was segmented and used for 
subsequent analysis. Intraclass correlation 
coefficient (ICC) >0.75 indicates a good 
agreement (30). The categories of imaging 
features and primary filtering process are 
detailed in Supplementary S3 and S4. 

Feature selection and radiomics model 
building

We conducted statistical tests for base-
line clinical characteristics in patients with 
and without early recurrence and found 
that AFP, tumor number, and tumor size 
were significantly different between the 
two groups in the training cohort. In order 
to select effective and complementary im-
aging features that were independent of 
these aforementioned clinical variables, we 
applied propensity score matching (PSM) to 
achieve a balance between the two groups 
in the training cohort (Supplementary S4; 
Fig. S2). The least absolute shrinkage and 
selection operator (LASSO) on the logistic 
regression model was used to select vari-
ables for constructing a prediction model. 
Then, the predictive model was validated 
in the validation cohort. Furthermore, we 
applied the Youden index to determine the 
optimal cutoff value for dichotomizing the 
radiomics scores and stratifying patients ac-
cording to their risk of early recurrence (i.e., 
low- and high-risk of early recurrence).

Construction and validation of the 
radiomics-based nomogram

Multivariable logistic regression analysis 
was applied to test the independent sig-
nificance of different factors on tumor re-
currence (the P  value threshold was set to 

Main points

•	 The radiomic signature based on contrast-en-
hanced CT was able to stratify HCC patients 
into low-risk and high-risk groups, which dif-
fered in recurrence-free survival and overall 
survival.

•	 The radiomic nomogram, which integrates a 
dichotomised radiomic signature as well as 
clinical characteristics, has better predictive 
performance than the clinical nomogram 
alone, for predicting early recurrence of HCC.

•	 Radiomic nomogram is useful for noninvasive-
ly identifying HCC patients with high early re-
currence risk after curative resection.



P < 0.15). Candidate predictors included di-
chotomized radiomics signature, AFP, tumor 
number, and tumor size. We constructed two 
nomograms, with or without dichotomized 
radiomics signature, to explore improve-
ment in the predictive performance of the 
radiomics nomogram, as compared with 
clinical parameters. The area under the re-
ceiver-operating characteristic (ROC) curve 
(AUC) was utilized to illustrate the predictive 
performance, and the Delong test was ap-
plied to determine whether the difference 
was significant. Calibration curves were as-
sessed graphically by plotting the observed 
rates against the nomogram-predicted 
probabilities. A Hosmer–Lemeshow test was 
used to assess the uniformity between the 
observed and predicted values.

Statistical analysis
All statistical analyses were conducted 

using R software (http://www.Rproject.org; 
version 3.5.2; open source software, The R 
Foundation) and SPSS software (version 
22.0; IBM Corp.). Continuous variables were 
compared between groups using the inde-
pendent samples t-test for variables with a 
normal distribution or the Mann-Whitney U 
test for variables with an abnormal or un-
known distribution. Categorical variables 

were compared between groups using the 
chi-square test or Fisher’s test where ap-
propriate. The association of variables with 
early recurrence was assessed using logistic 
regression analysis. The “pROC” package 
was used to plot the ROCs and measure the 
AUC. Survival curves were generated using 
the Kaplan-Meier method and compared 
using a two-sided log-rank test. The other R 
software packages used for statistical anal-
ysis and plotting were listed in Supplemen-
tary S5. A two-sided P value of <0.05 was 
considered statistically significant.

Results
Overall, 262 HCC patients were included in 

the current study. Of these, 119 patients were 
diagnosed with early recurrence (93 in the 
training cohort and 26 in the validation co-
hort); the baseline characteristics of patients 
in the training and validation cohorts are 
presented in the Table. Patients with early re-
currence had higher AFP levels, more tumors, 
and larger tumors than did patients without 
early recurrence in the training cohort. 

In total, 1665 features were extracted from 
the VOIs in portal venous phase contrast-en-
hanced CT images. After the reproducibility 
analysis, we derived 1497 and 1532 common 
features with inter- and intraobserver ICC 

>0.75, separately. Then, the 1475 common 
features that were reproducible in both intra- 
and interobserver analysis were adopted for 
subsequent analysis. The heatmap demon-
strated that early recurrence, AFP levels, BCLC 
stage, tumor number, and tumor size were 
consistently differentially distributed in these 
clusters (Fig. 2). As the baseline clinical charac-
teristics in the groups with and without ear-
ly recurrence were not balanced (Table), we 
matched 70 pairs of cases for all risk factors 
using a PSM analysis and selected features 
that were not redundant with the clinical 
characteristics and that differed significantly 
between the two groups. The relative multi-
variate imbalance L1 before the PSM is 0.345, 
and the value change to 0.043 after PSM, 
which means that we get a balance of covari-
ate between the early recurrence group and 
no early recurrence group. The 1475 features 
were thus converged to 59 potential predic-
tors in the training cohort after PSM, based on 
the outcomes of univariate logistic regression 
analysis with a threshold P = 0.15.

The putative predictive imaging features 
were entered into the LASSO logistic regres-
sion model. With 10-fold cross-validation, 
filtered no-overfitting features were used 
to construct the radiomics signature with 
the maximal AUC in the total training cohort 
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Figure 1. a–c. The workflow of the current study. In panel (a), we obtained venous-phase contrast-enhanced CT images and segmented the volume of 
interest; panel (b) shows categories of extracted features; panel (c) shows the workflow outlining the process of features extraction and selection, of radiomics 
signatures and radiomics nomogram building, clinical utility assessment of the model (prediction of early recurrence and survival risk stratification), an 
exploratory analysis of small sample to construct the gene module with weighted gene co-expression network analysis (WGCNA), and the association between 
the predictive value of radiomics features and gene pathways using gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 
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(Fig. 3). A risk score was calculated for each 
patient using the formula derived from the 
expression value of these features, weighted 
by their regression coefficient (Supplemen-
tary S6). The radiomics scores of patients with 

early recurrence were generally higher than 
those of patients without early recurrence in 
the training cohort (0.41 vs. -0.94; P < 0.001). 
This finding was also confirmed in the valida-
tion cohort (0.36 vs. -0.88; P = 0.008) (Table). 

On the basis of the maximum Youden in-
dex, we used an AUC to determine the opti-
mal cutoff value (-0.251) based on the train-
ing cohort data. The optimal cutoff value 
was applied to the training and validation 
cohorts to separate patients into low-risk 
and high-risk groups (Fig. 4a, Fig. S3). This 
dichotomized radiomics signature yielded 
an AUC of 0.749 in the training cohort (95% 
CI, 0.690 to 0.808; P < 0.001) and an AUC of 
0.759 in the validation cohort (95% CI, 0.640 
to 0.877; P < 0.001) (Fig. 4b, 4c).

In the training cohort, patients belonging 
to the high-risk group had shorter RFS (haz-
ard ratio [HR] 4.650; 95% CI, 3.080 to 7.030, 
P  <  0.001) and shorter OS (HR 4.73; 95% 
CI, 2.440 to 9.180, P  <  0.001) (Fig. 4d, 4e). 
Similarly, in the validation cohort, patients 
belonging to the high-risk group had short-
er RFS (HR 2.820; 95% CI, 1.320 to 6.020; 
P < 0.001) and OS (HR 4.420; 95% CI, 1.290 
to 15.130; P = 0.010) (Fig. 4f, 4g).

By applying multivariate logistic regres-
sion analysis, we identified that the di-
chotomized radiomics signature, AFP lev-
el, tumor number, and tumor size were the 
key parameters related to early recurrence 
in patients with HCC (Supplementary S7). 
Among these factors, the dichotomized 
radiomics signature had the highest odds 
ratio (OR 6.399; 95% CI, 3.219 to 12.723; 
P  <  0.001). Next, we developed two no-
mograms that incorporated the above 
independent predictors: 1) the radiomics 
nomogram, which comprised the dichot-
omized radiomics signature along with 
clinical risk factors, and 2) the clinical no-
mogram, which included only clinical risk 
factors (Fig. 5a; Fig. S4). Our results demon-
strated that the predictive performance of 
the radiomics nomogram was significantly 
better than that of the clinical nomogram 
(AUC 0.800; 95% CI, 0.740 to 0.859 vs. AUC 
0.716; 95% CI, 0.690 to 0.808; P < 0.001 in 
the training cohort and AUC 0.785; 95% 
CI, 0.657 to 0.913 vs. AUC 0.654; 95% CI, 
0.505 to 0.803; P  =  0.039 in the valida-
tion cohort). The calibration curve of the 
radiomics nomogram demonstrated that 
there was a strong agreement between 
the prediction of early recurrence and the 
actual observation of early recurrence in 
the training cohort and in the validation 
cohort (Fig. 5b, 5c). The Hosmer-Leme-
show test revealed that there were no 
significant differences between the pre-
dictive calibration curve and the ideal cal-
ibration curve for the prediction of early 

Figure 2. Radiomics heatmap. Unsupervised clustering of patients with hepatocellular carcinoma in the 
training cohort (y-axis) and radiomics feature expression (n=1475; x-axis) revealed clusters of patients 
with similar radiomics expression characteristics. AFP, serum alpha-fetoprotein; BCLC, Barcelona clinical 
liver cancer staging.

Figure 3. Selection of radiomics features using the least absolute shrinkage and selection operator 
(LASSO) binary logistic regression. Turning parameter (λ) selection in the LASSO model used a 10-fold 
cross-validation via minimum criteria, and optimal λ resulted in 30 nonzero coefficients. The area under 
the receiver operating characteristic (AUC) curve was plotted versus log (λ). Dotted vertical lines were 
drawn at the optimal values by using the minimum criteria and 1 standard error of the minimum 
criteria (the 1-SE criteria) according to 10-fold cross-validation. The minimum criteria were chosen as the 
optimal λ with the largest AUC in the training data set, which resulted in 30 non-zero coefficients.
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Table. Baseline characteristics of patients

Training cohort

P

Testing cohort

PVariable
No-early recurrence 

(n=121)
Early recurrence 

(n=93)
No-early recurrence 

(n=22)
Early recurrence 

(n=26)

Age (years), mean±SD 50.8±12.7 50.7±11.8 0.967 53.8±9.1 58.5±12.7 0.082

Sex, n (%)

   Female 15 (12.4) 11 (11.8) 0.900 2 (9.0) 8 (30.8) 0.137

   Male 106 (87.6) 82 (88.2) 20 (90.9) 18 (69.2)

Hepatitis B, n (%)

   Negative 10 (8.3) 7 (7.5) 0.843 6 (27.3) 13 (50.0) 0.109

   Positive 111 (91.7) 86 (92.5) 16 (72.7) 13 (50.0)

Hepatitis C, n (%)

   Negative 121 (100.0) 92 (98.9) 0.435 22 (100.0) 23 (88.5) 0.295

   Positive 0 (0.0) 1 (1.1) 0 (0.0) 3 (11.5)

Child-Pugh, n (%)

   A 117 (96.7) 84 (90.3) 0.053 22 (100.0) 23 (88.5) 0.295

   B 4 (3.3) 9 (9.7) 0 (0.0) 3 (11.5)

ALT*, n (%)

   ≤40 U/L 88 (72.7) 66 (71.0) 0.776 - - -

   >40 U/L 33 (27.3) 27 (29.0)

AST*, n (%)

   ≤40 U/L 115 (95.0) 91 (97.8) 0.478 - - -

   >40 U/L 6 (5.0) 2 (2.2)

AFP, n (%)

   ≤400 ng/mL 94 (77.7) 56 (60.2) 0.006 19 (86.4) 22 (84.6) 1.000

   >400 ng/mL 27 (22.3) 37 (39.8) 3 (13.6) 4 (15.4)

Radiologic evidence of cirrhosis*, n (%)

   Absent 53 (43.8) 29 (31.2) 0.060 - - -

   Present 68 (56.2) 64 (68.8)

BCLC stage, n (%)

   0 + A 111 (90.2) 75 (80.0) 0.017 20 (91.0) 18 (69.2) 0.137

   B 10 (9.8) 18 (20.0) 2 (9.0) 8 (30.8)

Tumor number, n (%)

   ≤1 111 (91.7) 73 (78.5) 0.006 20 (91.0) 18 (69.2) 0.137

   >1 10 (8.3) 20 (21.5) 2 (9.0) 8 (30.8)

Tumor size, n (%)

   ≤5 cm 81 (66.9) 33 (35.5) <0.001 13 (59.1) 10 (38.5) 0.154

   >5 cm 40 (33.1) 60 (64.5) 9 (40.9) 16 (61.5)

Radiomic signature score,  
median (interquartile range)

-0.94 (-1.60, -0.31) 0.41 (-0.38, 1.19) <0.001 -0.89 (-1.27, -0.45) 0.36 (-0.91, 1.45) 0.008

 SD, standard deviation; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AFP, serum alpha-fetoprotein; BCLC, Barcelona clinical liver cancer staging.
*No corresponding variables recorded in TCIA&TCGA cohort.  
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recurrence in both cohorts (P = 0.525 and 
P  =  0.780 for the training and validation 
cohorts, respectively). 

Discussion
We evaluated the utility of a radiomics 

nomogram derived from clinical and CT 
data for the noninvasive preoperative and 
real-time prediction of early recurrence of 
HCC patients who underwent curative sur-
gery. The radiomics signature was found 
to be effective for predicting early recur-
rence, and the dichotomized radiomics 
signature successfully stratified patients 
according to their risk of early recurrence 
and differences in RFS and OS. After we 

incorporated the dichotomized radiomics 
signature and the clinical risk factors (AFP, 
tumor number, and tumor size) into a con-
venience radiomics nomogram, the pre-
dictive performance and generalizability 
were further improved compared with the 
readily accessible clinical model. Both ra-
diomics-based models offer clinically utili-
ty, which may help clinicians design more 
effective treatment strategies tailored to 
the specific characteristics of individual 
patients and their disease. 

Radiomics has been recognized as an 
important imaging biomarker in oncolo-
gy; however, some methodological and 
technical inconsistencies have limited 
its clinical application (12). For example, 

there is currently no validation process for 
developing a radiomics model (15, 16, 23, 
24). In our study, the radiomics nomogram 
demonstrated outstanding discrimination 
in both training (AUC, 0.800; 95% CI, 0.740 
to 0.859) and validation cohorts (AUC, 
0.785; 95% CI 0.657 to 0.913). Next, consid-
ering that tumors are spatially and tempo-
rally heterogeneous, the largest cross-sec-
tion of the image cannot fully capture this 
heterogeneity, just as the genomic data 
extracted from a small portion of tumor 
tissue does not represent the entire tumor 
(15, 18, 23, 24). Therefore, we delineated 
the whole volume of the tumor to com-
prehensively characterize the underlying 
pathophysiology. 

Figure 4. a–g. Predictive performance of the radiomics signature. Panel (a) shows radiomics signature 
scores for each patient in the training and validation cohorts. The turquoise-colored bars show scores 
for patients with early recurrence, and the red-colored bars show scores for patients without early 
recurrence. Panels (b, c) show receiver operating characteristic curves to compare the sensitivity and 
specificity of the constructed models (containing dichotomized radiomics signature scores; clinical 
nomogram, including AFP, tumor number and tumor size; and radiomics-based nomogram, including 
AFP, tumor number, tumor size, and dichotomized radiomics signature) and clinical variables for 
prediction of early recurrence (panel (b), training cohort; panel (c), validation cohort). The Hosmer–
Lemeshow test was used to compare the difference between the radiomics-based nomogram and 
the other models. Radiomics signature = Dichotomized radiomics signature. Panels (d, e) show 
Kaplan–Meier curves of recurrence-free survival according to the dichotomized radiomics signature 
scores (panel (d), training cohort; panel (e), validation cohort). Panels (f, g) show Kaplan-Meier curves 
of overall survival according to the dichotomized radiomics signature scores (panel (f), training 
cohort; panel (g), validation cohort).

d

g

a

e

b

f

c



Additionally, some early predictive radio-
mics models are based on semantic image 
features, which are subjective and expe-
rience-dependent (31, 32). The radiomics 
model presented here is based on compu-
tational image features, which are objec-
tive and highly reproducible. Furthermore, 
imaging features were extracted from im-
ages obtained in multiple centers that used 
different CT scanners, standard operating 
procedures for contrast-enhanced CT, slice 
thicknesses, voltages, and other machine 
parameters (12). Aerts et al. (14) suggested 
that the power of radiomics may be im-
proved by using normalization methods 
and Sun et al. (33) noted that the peak ki-
lovoltage, an image acquisition variable, is 
a significant factor in a radiomics model for 
predicting tumor-infiltrating CD8+ T cells, 
which highlights the need to consider the 
image acquisition parameters during mod-
elling. A number of studies have described 
the details of avoiding the variability of fea-
tures extracted from images (15, 16, 18, 19, 

22–26). Recent CT radiomics studies have 
reported that using grey-level normaliza-
tion and voxel-size resampling greatly re-
duced the differences in scanners and CT 
parameters (12, 34). Since the present study 
utilized multiple CT scanners and different 
parameter settings, we applied normaliza-
tion and resampling to the images before 
feature extraction in order to standardize 
imaging features.

Radiomics features could represent the 
tumor phenotype and the tumor microen-
vironment, which are distinct from other 
pertinent data sources (including clinically 
obtained, treatment-related, or genomic 
data) (12, 14, 27, 33). Therefore, radiom-
ics-based models should be compared with 
clinical characteristics in order to explore 
whether the combined radiomics-clinical 
model can improve the predictive perfor-
mance of the clinical model alone. In other 
words, the features used to develop a pre-
dictive radiomics model were selected be-
cause they were capable of predicting early 

recurrence, not because they were simply 
significantly associated with clinical charac-
teristics that were themselves significantly 
associated with early recurrence. Chan et al. 
(8) developed a preoperative, noninvasive 
model (ERASL-pre) using readily accessi-
ble clinical factors that could successfully 
stratify patients into three groups based on 
the risk of early recurrence of HCC. Kim et 
al. (17) revealed that their radiomics mod-
el added no additional value as compared 
with the clinicopathologic model. In order 
to develop a robust and generalized model, 
we should remove the overfitting issues of 
high dimensional imaging features. Howev-
er, few studies have attempted to eliminate 
the redundancy between imaging features 
and clinical data and to select the comple-
mentary imaging features for subsequent 
analysis. In the present study, since there 
was an imbalance in the clinical data be-
tween the groups with and without early 
recurrence, we applied PSM to achieve bal-
anced pairs in which to screen for indepen-
dent imaging features and construct a ra-
diomics signature that was not affected by 
the clinical variables. We then incorporated 
the dichotomized radiomics signature and 
clinical nomogram into a radiomics nomo-
gram, which improved the performance of 
the clinical nomogram (Fig. 4b, 4c). 

In the present study, 30 radiomics quan-
titative features were identified as most 
associated with early recurrence. Among 
them, 28 were texture features, includ-
ing histogram, glcm, gldm, glrlm, and 
glszm, and 2 were morphological features. 
Among texture features, glcm, gldm, glrlm, 
and glszm reflect signal mixing degree of 
the lesions by means of relative relation-
ship between distribution and site of the 
gray level, and thus important markers of 
intratumor heterogeneity (12, 14, 27). Al-
though these features could reflect differ-
ent aspects of textural information and the 
underlying tumor biology, the correlation 
between a single radiomics feature and 
the biological behavior is difficult to grasp 
intuitively (14). Therefore, construction 
of a multi-feature model is a more robust 
and generalized approach for outcome 
estimation, which can comprehensively 
represent the heterogeneity of the tumor. 
Although many studies revealed that ra-
diomics features can capture the hetero-
geneity of tumors, it is not clear how the 
radiomics features could predict the recur-
rence rate of a patient who received radi-
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Figure 5. a–c. Developed nomogram and calibration curves of the nomogram. Panel (a) shows 
the nomogram developed to predict the risk of early recurrence in patients with hepatocellular 
carcinoma who underwent resection with curative intent (including AFP, tumor number, tumor size, 
and dichotomized radiomics signature). Panels (b, c) show the calibration curves of the radiomics-
based nomogram, which was used to depict the calibration of each model in terms of the agreement 
between the predicted risks of early recurrence and observed outcomes of early recurrence. The 
y-axis represents the actual early recurrence, and the x-axis represents the predicted risk of early 
recurrence. The diagonal dotted line represents perfect prediction by an ideal model. The red-colored 
solid line represents the performance of the nomogram; a closer fit to the diagonal dotted line 
represents better predictive performance (panel (b), training cohort; panel (c), validation cohort).

a

b c
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cal hepatectomy (12, 13, 27). Therefore, it 
is important to inform clinicians that the 
radiomics features are not pixels in an im-
age, but rather represent specific molec-
ular biological functions that mediate the 
progression and metastasis of tumors. An 
exploratory analysis of a small sample was 
conducted to identify the association be-
tween the radiomics features and underly-
ing pathophysiology. As demonstrated in 
Supplementary S8, we observed the radio-
mics features that significantly associated 
with gene pathways related to cell cycle 
progression, extracellular matrix, cell ad-
hesion, cell chemotaxis, angiogenesis, and 
immune response (Fig. S5). 

Considering the high rate of early recur-
rence in patients that received radical hepa-
tectomy, many neoadjuvant and adjuvant 
schemes have been applied to reduce the 
risk of tumor recurrence and prolong the 
OS. While the effectiveness of the existing 
interventional method is controversial (35), 
it was speculated that the discrepancy in 
these findings may be attributed to a lack 
of screening out potentially high-risk pa-
tients that actually require neoadjuvant or 
adjuvant treatments. Therefore, an effective 
biomarker for identifying patients with a 
high risk of recurrence is urgently needed. 
As demonstrated in the decision curve anal-
ysis (Fig. S6), the clinical decision brought 
by the radiomics model may provide a net 
benefit by setting a threshold; for example, 
when a patient is identified to have a high 
risk of early recurrence, extra neoadjuvant 
or adjuvant treatment options, such as 
transarterial chemoembolization, transar-
terial radioembolization, chemoprevention, 
and targeted therapy, may be prescribed. 
Though the performance and generality 
of the radiomics model require more sam-
ples, multicenter, and prospective valida-
tion, it provides a new potential biomarker 
to identify patients with a high risk of early 
recurrence. 

The present study has some limitations. 
First, this was a retrospective study; the 
number of participants included in the 
validation cohort was less than that in the 
training cohort, and the validation cohort 
included patients who were of different 
races and who had different distributions of 
pathogenesis of HCC. It is therefore possible 
that these differences may have influenced 
the results. The clinical information was 
also not matched between patients in the 
training cohort and those in the validation 
cohort, and therefore, we had to exclude 

several parameters. For example, antiviral 
treatment was applied in almost every pa-
tient in the training cohort, which may have 
affected their OS (2, 3); however, this treat-
ment process was not recorded in the TCIA 
and TCGA cohorts. Nevertheless, we were 
able to stratify patients into two groups 
based on the risk of recurrence, and these 
findings illustrate the generalization poten-
tial of our model and provides evidence for 
the multicenter application of the radiom-
ics model. Second, we set the threshold of 
the P value in the multivariable regression 
to 0.15 in order to develop a radiomics no-
mogram that incorporated all three clinical 
factors (i.e., AFP, tumor number, and tumor 
size) that were associated with a higher re-
currence rate and impaired survival of pa-
tients with HCC (2, 3). After integrating both 
the clinical factors and radiomics features 
into a radiomics nomogram, the prediction 
accuracy surpassed that of the readily ac-
cessible clinical nomogram. Third, the VOI 
was manually delineated by one abdom-
inal radiologist, and this may have led to 
intraobserver bias and affected the results. 
Secondary class verification of the delinea-
tion could ensure higher intraobserver re-
producibility. Finally, we segmented the VOI 
in the portal venous phase (PVP) and ex-
tracted features from the single phase. The 
tumor boundary in the PVP may be sharper 
and clearer in our dataset, which is ideal for 
manual segmentation. In the future, we will 
segment the VOI in both the arterial and 
portal venous phases.

In conclusion, we successfully devel-
oped and validated a radiomics nomogram 
for the prediction of early recurrence in 
patients with HCC who underwent cura-
tive resection. Additionally, the predictive 
performance and generalizability of the 
radiomics nomogram, which integrated a 
dichotomized radiomics signature as well 
as clinical characteristics, were improved 
as compared to those of the clinical nomo-
gram alone.
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Supplemental Figure 2. a–c. The result of Propensity score matching (PSM). Panel (a), absolute standardized difference in means among early recurrence 
and no-early recurrence after PSM; Panels (b, c), histograms demonstrating the distribution of PSM among early recurrence and no-early recurrence in the 
training cohort.

a b c

Supplemental Figure 3. a, b. Radiomics signature scores distribution. The radiomics signature scores for 
each patient in the training cohort (a) and validation cohort (b). Turquoise-colored bars show scores for 
HCC patients with early recurrence. Red bars show scores for patients without early recurrence.

a b

Supplemental Figure 1. The workflow of enrollment. 
HCC, Hepatocellular carcinoma; CT, computed tomography; TACE, transcatheter arterial chemoembolization; RFA, radiofrequency ablation; PMCT, percutaneous microwave 
coagulation therapy; NFHSMU, Nanfang Hospital Southern Medical University; FAHUSC, First Affiliated Hospital of University of South China; TCGA, The Cancer Genome Atlas.

Supplemental Figure 4. Clinical nomogram 
included AFP, tumor number and tumor size, 
to predict the risk of early recurrence in HCC 
patients who underwent resection with curative 
intent. AFP, alpha-fetoprotein.
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Supplemental Figure 5. a–f. Gene co-expression modules associated with image features. In panel (a), cluster dendrogram groups genes into distinct 
modules using 18 patients in TCIA&TCGA cohort, with y-axis corresponding to co-expression distance between genes and x-axis to genes; Panel (b) shows 
heatmap which characterizes the association between modules and image features. Y-axis represents the modules that are significantly associated with 
at least one of the image features. X-axis represents the image features that are significantly associated with at least one of the gene modules. The value 
in the grid represent the Pearsons correlation coefficient and the statistical P value in parentheses; panels (c–f) show relevant gene ontology categories 
enriched in the modules significantly associated with image features. We choose P < 0.05 after multiple correction using false discovery rate (FDR). Y-axis 
represents the relevant gene ontology pathways (biological process (c); cellular components (d); molecular function (e)) and KEGG pathways (f). X-axis 
represents the gene ratio in the corresponding biological process.

d

a

e

b

f

c

Supplemental Figure 6. Decision curve analysis. 
The y-axis measures the net benefit. The blue 
line represents the radiomics signature. The 
green line represents the radiomics nomogram, 
which includes AFP, tumor number, tumor size, 
and dichotomised radiomics signature. The red 
line represents the clinical nomogram, which 
includes AFP, tumor number, and tumor size. 
The grey line represents the assumption that 
all patients have early recurrence. The black 
line represents the assumption that no patients 
have early recurrence. Our analysis indicated 
that, when the threshold probability was above 
18%, the radiomics model for predicting early 
recurrence provided more benefit than the ‘treat 
all’ or ‘treat-none’ strategy.
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S8. Gene co-expression modules associated with imaging features
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S1. Recruitment flowchart for patients in this study
Inclusion criteria were as follows: (I) availability of CECT images obtained within 2 weeks pre-operatively and other pre-operative clin-

ical parameters; (II) the Barcelona Clinic Liver Cancer-BCLC stage 0 - A; (III) resection with curative intent, with available histopathologic 
report of the HCC and without prior treatment for this disease; (IV) age ≥18 years and ≤70 years; and (V) no history of other malignancies. 
Exclusion criteria were as follows: (I) severe cardiac, pulmonary, cerebral, renal, or other organ dysfunction; (II) macroscopic vascular tumor 
thrombosis and extrahepatic metastasis; (III) liver functional status of Child-Pugh class C; (IV) spontaneous rupture of the lesion and bleed-
ing into the abdominal cavity; and (V) loss to follow-up within 2 years, without recurrence.

A total of 1021 consecutive patients underwent resection with curative intent, but only 262 patients met the criteria for enrolment in the 
current study. Among the eligible patients, 214 patients from NFHSMU were allocated to a training cohort. Considering that the numbers 
of samples obtained from the TCGA and TCIA and the FAHUSC were small, these two cohorts (48 patients) were assigned to the validation 
cohort.

Routine preoperative laboratory examinations, including liver and renal function tests, hepatitis B and C immunology, serum alpha-fe-
toprotein (AFP) levels, platelet count (PLT), prothrombin time (PT), and the international normalized ratio (INR), were conducted for all 
participants. 

Radiomics-based nomogram for prediction of early recurrence in HCC
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S2. Computed tomography imaging acquisition parameters, image segmentation and  
intra-class correlation coefficient 

All patients from NFHSMU and FAHUSC underwent contrast-enhanced CT (CECT) using either of two multi-detector row CT (MDCT) 
systems: the SOMATOM (Siemens Medical Systems) or the Brilliance iCT 256 (Philips Healthcare). The scanning parameters are listed in the 
below Table. Additionally, we injected contrast material (1.5 mL/Kg, Ultravist 370, Bayer Schering Pharma) intravenously at a flow rate of 
2.0–3.0 mL/s using a pump injector (Ulrich CT Plus 150, Ulrich Medical) to obtain CECT images. Four-phase (unenhanced, hepatic arterial, 
portal venous, and delayed phases) CT images were obtained at 0 s, 30 s, 60 s, and 120 s after injection, respectively. The CT parameters 
used for TCIA and TCGA data have been described elsewhere (http://www.cancerimagingarchive.net/). Images were stored in digital imag-
ing and communications in medicine (DICOM) format.

The four-phase CECT images were retrieved and downloaded from the picture archiving and communication system (PACS) (Care-
stream). The portal venous phase CECT images were used to delineate the volume-of-interest (VOI) and to extract imaging features. The 
3D masks of the VOIs of tumor lesions were segmented manually using ITK-SNAP software (version 3.6.0; open source software; http://
www.-radiantviewer.com). Inter- and intra-observer reproducibility of tumor masking and radiomics feature extraction were initially ana-
lyzed with 30 randomly chosen images for VOI-based texture feature generation by two abdominal CT interpretation radiologists (Z.Y.Z., 
reader 1, with 5-year experience; J.Z., reader 2, with 10-year experience). To evaluate the intra-observer reproducibility, reader 1 repeated 
the tumor masking delineation and generation of texture features twice with an interval of at least 1 week. Reader 1 completed the seg-
mentation for the remaining images. Then, every VOI was checked in detail by reader 2. Disagreements about delineating the VOI were 
resolved by discussion to consensus. The final segmentation results were confirmed by a senior abdominal radiologist with 20 years of 
work experience (H. Zhao). All radiologists were specifically blinded to the clinicopathologic characteristics and follow-up outcomes.

Parameter SOMATOMa Brilliance iCT256 SOMATOMb

Tube voltage (kVp) 120 120 120

Tube current (mA) Auto Auto Auto

Detector collimation (mm) 64×0.6 128×0.625 128×0.6

Field of view (mm) 250–500 300–400 210–400

Pixel size 512×512 512×512 1024×1024

Rotation times (s) 0.5 0.5 0.5

Slice interval (mm) 0 0 1

Slice thickness (mm) 1–5 1–5 1

Reconstructed section thicknesses (mm) 1 1 0.6
aThe SOMATOM multi-detector row CT systems used in the NFHSMU. bThe SOMATOM multi-detector row CT systems used in the FAHUSC. 



S3. Radiomics feature extraction
To reduce variability between scans, some parameters were set for the VOIs before the features were extracted. These included normal-

izing the image signal intensities, remapping the histogram to fit within μ ± 3σ (μ, mean grey-level within the VOI; σ, grey-level standard 
deviation), resampling to a voxel of 1×1×1 mm3 using nearest-neighbor interpolation, and setting the bin width to 25 (1–3).

Radiomics features were extracted from original images as well as from different image transformations, including five Laplacian of 
Gaussian filters (σ = 0.5, 1.0, 1.5, 2, 2.5, 3), eight wavelet decompositions, and four non-linear transformations (exponential, square, square 
root, and logarithm). The histogram of voxel intensity values within the VOI was described by 19 first-order statistics features. Textural fea-
tures were divided into 16 grey-level-dependence matrix (GLDM) features, 16 grey-level size zone matrix (GLSZM) features, 16 grey-level 
run-length matrix (GLRLM) features, 16 grey-level distance zone matrix (GLDZM) features, and 26 grey-level co-occurrence matrix (GLCM) 
features. These features are explained and described in detail at https://pyradiomics.readthedocs.io/en/latest/features.html. All features 
listed in the website were extracted, with the following exceptions: Compactness1, Compactness2, and SphericalDisproportion from 
shape features were excluded because they are directly correlated to Sphericity; SumAverage was eliminated because it is directly cor-
related with JointAverage; Homogeneity1 and Homogeneity2 were also disabled because they are significantly redundant with Inverse 
DifferenceMoment.

Then, effective radiomics features were extracted from each VOI by eliminating the primary redundant features. Simultaneously, values 
of the extracted radiomics features were normalized to z-scores for subsequent analysis.

Radiomics-based nomogram for prediction of early recurrence in HCC
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S4. Radiomics features filtering and selection
Part 1. The result of propensity score matching (PSM) 
We conducted statistical test for all patient baseline clinical characteristics in early recurrence group and no early recurrence group and 

found AFP, tumor number and tumor size were significantly difference between the two groups in training cohort. In order to select effec-
tive and complementary image features independent of these three clinical variable, we applied a propensity score matching (PSM) to get 
a balance between the early recurrence group and no early recurrence group in training cohort.

Patients with early recurrence were matched at a 1:1 ratio to patients without early recurrence by using a greedy, nearest-neighbor 
matching algorithm, with the caliper set to 0.1 and using a random matching order method. PSM achieved an adequate balance between 
patients with early recurrence and patients without early recurrence 

Following PSM, the distribution of propensity score was similar between early recurrence and no-early recurrence, suggesting balance 
of covariates included in the propensity score model.

The relationship between the imaging features and early recurrence status was evaluated using logistic regression analysis. Effect fea-
tures that were significant at P < 0.15 and were not redundant with clinical characteristics were selected for subsequent analysis.

Relative multivariate imbalance L1 among early recurrence and no-early recurrence after PSM (Iacus, King, Porro, 2010)

Before matching After matching

(all cases) 0.345 0.043

Part 2. Image feature selection and filter. Propensity score matching and univariate logistic regression were used to filter and select the 
features. The P value was set to be 0.15.

Feature classes* No. of features before filter No. of features after filter

First order intensity 18 0

Shape 12 2

GLSZM 14 0

GLRLM 16 0

GLDM 14 0

GLCM 21 0

Log-sigma 419 25

Wavelet 610 12

Logarithm 47 13

Square 71 0

Square-root 71 1

Gradient 82 1

Exponential 80 5

GLDM, gray-level dependence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run 
length matrix; GLDZM, gray-level distance zone matrix; GLCM, gray-level co-occurrence matrix; 
*compactness1, compactness2, SphericalDisproportion, SumAverage, Homogeneity1 and Homoge-
neity2 were excluded for directly correlated with other feature.



S5. Statistical analysis and R packages 

The packages of R software used for statistical analysis and plotting.
1)	 Intra-class correlation coefficient (ICC) was done using the “irr” package.
2)	 LASSO binary logistic regression was done using the “glmnet” package. 
3)	 Logistic regression and nomogram were done with the “rms” package.
4)	 AUC and Delong test was done with the “pROC” package. 
5)	 The Mann-Whitney U test was done with “stats” package. 
6)	 Some of the figure were done with “ggplot2” pakage. 
7)	 Calibration curves was done with R package CalibrationCurves. 
8)	 Hosmer-Lemeshow test was done with “ResourceSelection” package. 
9)	 Decision curve analysis was performed using the “rmda” package. 
10)	 The WGCNA was done with “WGCNA” package.

Radiomics-based nomogram for prediction of early recurrence in HCC
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S6. Radiomics signature
A total of 30 features were selected to build the radiomics signature. Each patient’s radiomics score was generated by multiplying the 

selected features with their respective coefficients. 

Radiomics signature score = -0.3359 
- 0.00195 * exponential_glcm_JointAverage 
- 0.10047 * exponential_gldm_LargeDependenceHighGrayLevelEmphasis 
+ 0.27220 * exponential_gldm_LowGrayLevelEmphasis
+ 0.08915 * exponential_glrlm_LowGrayLevelRunEmphasis
- 0.63326 * logarithm_gldm_HighGrayLevelEmphasis
+ 0.63689 * logarithm_gldm_LargeDependenceHighGrayLevelEmphasis
- 0.29866 * logarithm_gldm_SmallDependenceLowGrayLevelEmphasis
+ 0.17121 * logarithm_glrlm_LongRunHighGrayLevelEmphasis
- 0.19608 * logarithm_glszm_GrayLevelNonUniformityNormalized
+ 0.07012 * logarithm_glszm_ZoneVariance
+ 0.68891 * log-sigma-1-5-mm-3D_firstorder_10Percentile
- 0.02083 * log-sigma-1-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis
- 1.82043 * log-sigma-2-mm-3D_firstorder_MeanAbsoluteDeviation
- 0.52988 * log-sigma-2-mm-3D_firstorder_RootMeanSquared
- 0.12020 * log-sigma-2-mm-3D_glszm_GrayLevelNonUniformityNormalized
- 0.83995 * log-sigma-3-mm-3D_firstorder_10Percentile
+ 0.52171 * log-sigma-3-mm-3D_firstorder_InterquartileRange
+ 0.38104 * log-sigma-3-mm-3D_firstorder_RobustMeanAbsoluteDeviation
- 0.09907 * original_shape_Elongation
- 0.32413 * original_shape_Sphericity
- 0.34883 * squareroot_firstorder_Variance
- 0.13119 * wavelet-HLL_firstorder_Mean
- 0.07462 * wavelet-HLL_glszm_LowGrayLevelZoneEmphasis
- 0.01455 * wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis
+ 0.04821 * wavelet-LLH_glszm_GrayLevelNonUniformity
+ 0.48789 * wavelet-LLL_firstorder_InterquartileRange
+ 0.41823 * wavelet-LLL_glcm_ClusterProminence
- 0.34196 * wavelet-LLL_gldm_GrayLevelVariance
- 0.58142 * wavelet-LLL_glszm_GrayLevelNonUniformityNormalized
- 0.03648 * wavelet-LLL_glszm_GrayLevelVariance



S7. Risk factors for early recurrence in hepatocellular carcinoma 
Multivariable logistic regression analysis was applied to test the independent significance of different factors on tumor recurrence (sig-

nificance threshold was set to P < 0.15). Candidate predictors included dichotomized radiomics signature, AFP, tumor number, and tumor 
size.

Radiomics-based nomogram for prediction of early recurrence in HCC

Intercept and variable

Clinical model Combined model

β Odds ratio (95%CI) P β Odds ratio (95%CI) P

Intercept -1.268 0.281 <0.001 -1.722 0.179 < 0.001

AFP 0.622 1.864(0.977 – 3.555) 0.059 0.641 1.898 (0.940 – 3.834) 0.074

Tumor number 1.334 3.796(1.575 – 9.150) 0.003 0.937 2.553 (0.974 – 6.693) 0.057

Tumor size 1.289 3.630(1.990 – 6.622) <0.001 0.556 1.744 (0.866 – 3.512) 0.119

Radiomics signature dichotomy 1.856 6.399 (3.219 – 12.723) < 0.001

β, regression coefficient; AFP, alpha-fetoprotein.
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S8. Gene coexpression modules associated with imaging features
TCGA and TCIA datasets containing both RNA-sequencing data and CT images were used to assess the association between the radio-

mics features (filtered and selected to construct the radiomics signature) and gene expression. These genes may reflect some specific mo-
lecular function, which can be used to potentially characterized the associated radiomics features. Spearman’s rank correlation coefficient 
was used to test for radiomics features association with “module gene” derived from the weighted gene coexpression network analysis 
(WGCNA)(5). Gene sets of the module genes were input into the Database for Annotation, Visualization, and Integrated Discovery (DAVID) 
in order to explore the specific molecular pathway ( https://david.ncifcrf.gov/ ) (6).

1) Data processing
Frozen RNA-seq data version 4.6 from the TCGA Pan-Cancer project, which comprised 20530 genes obtained with the Illumina Genome 

Analyzer Sequencing version 2 analysis (Illumina) (7), were used for TCGA cohort. The values were transformed from read counts to normal-
ized RNA-Sequence by Expectation-Maximization (RSEM). The full process is detailed at http://www.cbioportal.org/ (8, 9). The normalized 
expression was then transformed by log2, and only genes detected in more than 20% of the samples were retained and subjected to 
further analysis.

2) Construction of weighted gene coexpression networks and identification of modules associated with radiomics features
From thousands of genes, the interesting gene modules can be identified by weighted gene co-expression network analysis (WGCNA). 

The intramodular connectivity and gene significance based on the correlation of a gene expression profile with clinical characteristics of 
the patient are then used to identify a firm relation gene module in HCC for further validation. The genes above the filter are used to con-
struct the consensus gene modules and 22 gene modules were identified (Fig. S5a). We have chosen the soft threshold power 8 to define 
the adjacency matrix based on the criterion of approximate scale-free topology, with minimum module size 100, the module detection 
sensitivity deepsplit2, and cut height for merging of modules 0.25, meaning that the modules whose eigengenes are correlated above 
0.75 will be merged.

3) Functional enrichment analysis of gene in every gene module
Statistical power would have been markedly reduced by considering a large number of genes. Thus, instead of focusing on individual 

genes, we carried out a WGCNA by clustering genes into coexpressed modules, and summarized each module as a “module gene” (5). 
Spearman’s rank correlation analysis was conducted to evaluate the association between radiomics features and “module genes” and 
significance was set to P < 0.05. Gene sets of the module genes that significantly correlated with radiomics features were input into the 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) in order to explore the specific Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway ( https://david.ncifcrf.gov/ ) (6). Gene sets with a false discovery rate (FDR) of P < 0.05 
were considered significantly enriched GO terms and KEGG pathways.

4) The biological function of a gene module associated with radiomics features
Retained “module genes” that significantly correlated with at least one of the imaging features were used for GO and KEGG analysis 

using DAVID software (Fig. S5B). Through GO analysis, we discovered that the “module genes” that significantly correlated with radiomics 
features were significantly enriched for genes involved in cell cycle progression, extracellular matrix, cell adhesion, cell chemotaxis, angio-
genesis, and immune response (after FDR correction) (Fig. S5c–5f ). In other words, the 11 radiomics features significantly associated with 
“module genes” may be related to some biology function involved in the aggressive behavior of the tumor and immune response to the 
tumor. Therefore, these biological functions may explain why the radiomics features can predict patients with an early recurrence of HCC.



S9. Decision curve analysis
A decision curve analysis was developed to evaluate the clinical usefulness of the developed nomograms by quantifying the net bene-

fits of each at different threshold probabilities in the combined training and validation cohorts (4).
It was used to compare the benefit of the radiomics signature score, the clinical nomogram, and the radiomics nomogram (Fig. S6). We 

found that if the threshold probability in clinical decision was >18%, the patients would benefit more from the radiomics nomogram than 
either of the treat-all-patients scheme or the treat-none scheme. For example, if the personal threshold probability of a patient is 50% 
(the patient would receive additional interventional method if this probability of early recurrence was >50%), then the net benefit is 0.210 
when using the radiomics nomogram to make the decision of whether to undergo close surveillance or the other, with added benefit than 
the treat-all scheme or the treat-none scheme. The threshold probability is 30% in clinical nomogram. By combining the radiomics signa-
ture and clinical features, the radiomics nomogram exhibited a greater overall net benefit than the clinical nomogram alone and radiomics 
signature. Moreover, the AUC of the radiomics nomogram was significantly higher than the clinical nomogram (AUC= 0.798 and AUC= 
0.702, respectively, P <0.001), and the AUC of the radiomics nomogram was also higher than the radiomics feature though no significantly 
(AUC= 0.798 and AUC= 0.748, respectively, P = 0.830).
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